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A system subject to small perturbations is investigated. The motion of the system con- 
sists of two successive stages. The criterion of the qualitv of system operation is the 

value of a certain functional of its phase trajectory.The first stage of motion is succeeded 
by the second stage when a certain quantity dependent on the time, perturbations, and 

controlling parameters reaches a certain value. A typical example of such a system is 

a rocket for which the transition from powered flight to coasting occurs at the instant of 
attainment of a programmed value of some quantity measured during flight. 

The necessary and sufficient condition for the existence of a control ensuring the inva- 
riance of the system with respect to perturbations is formulated. The optimal guarantee- 

ing control is determined for cases where the domain of possible values of the perturba- 
tions is an n-dimensional ellipsoid or parallelepiped with its center at the origin. 

1, Let us consider a system A whose motion takes place in two distinct successive 

stages. The system h is acted on by small perturbations defined by the ?Z -dimensional 
vector E. The functional v of the phase trajectory of the system h has been defined. 

The symbol d denotes the principal part of the deviation from the unperturbed value ; 
this principal part is linear in E . We take the quantity 1 dVI as our criterion of system 
operation quality : the smaller the value of this quantity, the better. Transition from the 

first stage of motion to the second occurs upon attainment of a certain value of the quan- 

tity tl. This quantity is a linear form (switching function) of s quantities constituting 
a known vector function of the time and perturbations ; u = u (t, E). Control consists 

in selecting the vector cp of coefficients of the switching function rl = (Cp, U). 

An important practical application of this method of control is that of reducing rocket 
scatter by suitable adjustment of the instant of thrust cutoff. The various aspects of such 

control have been dealt with by many authors (e. g. see [l. S]). 

Our paper [3] concerns the stochastic variant of the problem in which the stochastic 
characteristics E are assumed known and it is necessary to find the control which mini- 
mizes the dispersion of the quantity dir. In the present paper we assume knowledge of 

only the domain E of possible values or E . The optimal control is defined as that con- 
trol which minimizes the maximum quantity j dV 1 possible for e E ti . The necessary 
and sufficient condition for the equality of this minimum to zero is formulated. The 
optimal control for those cases where E is an ellipsoid or parallelepiped with its center 
at the origin is determined. 

2. Let us assume that 
CM = (1c3, E) + odr, du =LE + HdT 

in the neighborhood of E = 0 and of the unperturbed value of the instant of switching ‘t. 
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nere M, o , L, If are known matrices of the orders n x 1, 1 x 2, s x 16, s x 1 , 
respectively. Since the equation c&l = 0 is fulfilled to within higher-order terms by 

virtue of the switching condition, we can write 

&f=St. 
(H, ~1 

(S - MH’ - WI,‘) 

We see that control by the above method with small perturbations is possible if and 
only if (H, rp) # 0 . We shall assume that the inequality H # 0 required for this to 

be the case is always fulfilled. Since multiplication of the vector cp by a nonzero con- 
stant does not alter the quantity CD’, we shall consider only the vectors g, belonging to 

the hyperplane @ = (9 : (ff, 9) = 1). By virtue of this normalization of the switch- 
ing function we have 

dV = E’S~I 
Our problem consists in finding 

1Lo =;EifE$I E’SFI @.I) 

A problem similar to (2.1) is investigated in [4]. The present study differs from 14~ 
in the fact that the author of the latter paper uses a numerical method of solution and 
considers a broader class of domains E. 

3. Let us cite some of the results of our paper 131, which concerns a stochastic variant 
of the problem. Let 

(e) = 0, (EE’) = D 

where f) is a known correlation matrix. 

((dV2) = cp’& (B = A’A, A = r/‘Es) 

(the symbol f d enotes the positive square root [S]). The quantity 3L = min ( (dk’)‘) 
under the condition cp G CD and the optimal vector rp can be determined from the sys- 
tem of equations Bq = M?, v-f, 9) = j (3.1) 

Theorems 3, 5-9 of [3] readily yield the following statements. 
Theorem 1. System of equations (3.1) is consistent. 

Theorem 2. System (3.1) has a unique solution if and only if rank 11 A’ H /I = s. 
Theorem 3. h L= 0 if and only if rank A < rank 1l.A H jj. 
4, T he o r e m 4. Let the origin be an interior point of the domain E.There exists a 

vector q0 such that SUP 1 ~‘i$, I= 0 if and only if 

rank S < rank [j S’H /j 

Proof. Necessity. If the vector q0 mentioned in the condition does exist, then 
~‘Scg, = 0 for any e E E . Since the direction of the vector E is arbitrary, it follows 

that Srp, = 0, S’sq, = 0. Applying Theorem 3 and setting A = S and li = 0 in (3.1), 

we find that rank S < rank // S' H //. 

Sufficiency. Let the matrices S and II S’ II 11 be of different rank. This, by Theorems 
1 and 3, means that the equations S’SQ = 0, N’cp = 1 are consistent. The vector cp 

obtained by solving this system (its first equation can be replaced by the equivalent 
equation Sa, = 0) ensures the fulfillment of the equation d V = 0 for any E. 

6, In this section we consider the case where E is a nondegenerate ellipsoid in n- 
dimensional space with its center at the origin. The inclusion E E f< is specified by 
means of the formula E’RF <:,I 

Here K is a symmetric positive-definite matrix. Let d?& = E. Then 
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av = &‘Srp = E’ (jfK)-‘sc+7 
where E belongs to the unit sphere X . 

If the vector cp is given, then the vector g which maximizes the quantity dv is a unit 
vector whose direction is the same as that of (I/r)-l~(p, 

1;~; ( dV 1 = Frt; E’ (fZjet Scp = fcp’pcp (P = S’PS) (5.1) 
2 

Next, we must find pa = mill fjcp’F($ for cp E @. It is clear that this problem 

differs from the stochastic one in the fact that K-’ and p2a are replaced by D and x. 

The quantity p. and the optimal values of ~JI can be determined by solving the system 

of equations Fq = pLo2H, (H, cp) = 1 (5.2) 

Theorem 5. The optimal vector cp E Q is unique if and only if rank (1s’ H j/ =S. 
The proof follows from Theorem 2 with allowance for the fact that the rank of the 

matrix K is equal to n by virtue of its nonsingularity. 
We see that the optimal controls for the stochastic and minimax variants of the prob- 

lem coincide in the case where E is an ellipsoid. It is, of course, necessary to compare 
the cases where the matrices D and K-’ differ by a scalar factor only. 

6. In this section we consider the case where E is a nondegenerate parallelepiped 
in n-dimensional space with its center at the origin. The points of such a parallelepiped 

can be expressed in parametric form. 

e=Tt (EEH ={~:I&/<< I}) 

Here T is a nonsingular matrix of order n x n. Then 

07 = E’Sr# = ~‘Ccp (C z T’S) 
For a fixed cp we have 

Here r is a linear manifold in Rcrl) which is the mapping of the domain @ from R(:) 
into R(n) by means of the operator C ; sign y is a vector with the components sign J’i. 
We have thus reduced the problem to the determination of 

min (Ccp, sign Ccp) = yr; (r, sign r) 
VPEO 

The coordinate axes contained in R(“) can be used to form 2” combinations. Let us 
assign to each such combination a subspace which is a Cartesian product of the coordi- 

nate axes occurring in the given combination. This yields 2” subspaces R5,where & is 
an n-dimensional vector: ai = 1 if the i th axis occurs in the given combination ; 
otherwise CQ = 0 . For example,the zeroth subspace for R(2) is Ri”,“}, the coordinate 
axes are R{l”‘) and R(” ‘1 and the entire plane is R{“‘). 

R” contains 2,‘, orthants. We shall say that fi is the direction vector of an orthant 

if 1 fli 1 = %i and if p belongs to the given orthant. We denote a closed orthant with the 
direction vector p by 0,;. For example O(“‘) is the first orthant in R(2) and O( m’SIJ’) 

is the second orthant in R(““‘) c R(R). 
Let Pbe the matrix of the orthogonal projection in 10 ) onto Ra, and let Ga = 

= I - P,where 1 is an identity matrix. The distance from the point r to R” is 
I/-(G”r, c’r), and the inclusion y E R” is expressed by the equation G”v = 0. 

Let P = r n R”, and let @= be the set of those cp for which y = Ccp E ra. 
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It is clear that the relation tp E: aJa is fulfilled for those and only those cp which satisfy 
the system of equations 

Gx CT == 0, (Ii, cp) ,,1 (fj.3) 
Let us investigate these equations. 
Theorem 6. System (6.2) is consistent if and only if rank (Qc) <rank I;C'GZ .!Ill. 
The proof follows from Theorem 3. We need merely replace A -by G’ C and note 

that G”Ga z- G1 

Theorem 7. System (6.2) has a unique solution if and only if 

rank (G’C) <( rank j;C’Ga Illj == s 

The proof of this theorem follows from Theorems 6 and 2. 
Theorem 8. There exists a unique vector ?’ defined by system (6.2) and the equa- 

tion y = ccp if and only if 

rank (G”C) c( rank jj C’Ga H /j = rank j/C’ H j! 

Proof. Necessity. Let there exist a unique vector y which satisfies the condition 
of the theorem. The inequality and the conditions of the theorem are then fulfilled. 
We set Acp = v(‘) - (p(s), where ‘p”’ and rp@) are any solutions of (6.2). Then 

GaCAp = 0, (H, Av) = 0 (6.3) 

By virtue of the uniqueness of y we have aCArp = 0. This implies the validity of the 

system of equations 
CAT== 0, (H, Aq)= 0 (6.4) 

Since systems (6.3) and (6.4) are equivalent, the ranks of their matrices are equal. 
Sufficiency. The consistency of Eqs. (6.2) and the existence of y are self-evident. 

Since systems (6.3) and (6.4) have equal ranks by hypothesis, and since the former is a 

consequence of the latter, they are equivalent. This means that the vector rp is the same 

for all solutions y of Eqs. (6.2). 
Our problem consists in finding min (y, sign y), where y E r. Let us consider the 

problem OX, i. e. the problem of finding min (y, sign y), where y E rz, and then 
determining the corresponding values of y and cp- 

Theorems 6 - 8 enable us to determine whether the sets ra and @ are empty and 

whether they contain one or more than one element. The following cases are possible. 

1) The sets P and CD” are empty. The problem @ is meaningless in this case. 

2) The sets Qx and 1’” contain one element each. These elements yield the solution 

of the problem 8”. 

3) The set @x contains more than one element and ya only one element y. 

The solurion of the problem ti* is given by this value of y or by any g, e @e, 
4) The sets Qa 2nd r= contain more than one element each. 

Let us find the sets r”,’ I_- l‘r n 0’) for the CI and fi ~3 Ba = (p : j&i =; ai) 
under consideration. Clearly, I? = Up r”fi, where p assumes all values from iI”. 

It is therefore sufficient to solve the problems 8”:’ , which consist in finding min (y, 

signy), where y E ray, for all p E B a and of choosing the smallest of the resulting 

minima. 

For y E O9 we have signy = p. Since the nonempty IX@ are closed convex, and 

since (p, y) for y E r”:’ is a linear nonnegative function of the argument y whose 
equivalent manifolds are bounded, it follows either that this function attains a minimum 
only on the boundary of rR@ or that it is constant on ra% 
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Let Aa be the set of those a* for which 

R=* c R” 9 dim R=* = dim R= - 1 

From now on we shall consider only those U* for each a which belong to the set Aa. 
Since the boundary of the nonempty r=a consists of points belonging to some set I?=‘, 

it follows that instead of the problems e=e we need merely consider the problems 8=* 

and then choose the smallest of the resulting minima. 

If (r,fl) is constant on I?=6 (for a fixed a this can happen for only one p E B=) , 
then the function (y, sign y) has the same value on ra* as it does on Pa, 

In this case the solution of the problem (l= is given by any convex linear combination 
of any vectors cp (one from each @‘). We can now readily construct an algorithm for sol- 
ving the principal problem (){‘#*.*JI. 

Let us describe the procedure y as it applies to the problem 8”. The first step is to 

determine which of Cases (l)-(4) applies to the problem 0”. 
If Cases (2).(Z) apply, we include the corresponding vector in the set A. 
If Case (4) applies, we include the corresponding vector a in the set e. 
If Case (1) applies, then: (a) for a # 0 we include the coordinate axes occurring in 

the given R” in the set Q,, where r = dim R”; (b) for 0: = 0 we include all the 

coordinate axes in Qo. 
Let us first apply the procedure Y to all the 0” where dim R= = max { 0, n - 

- s + I}. If it turns out that a E Q, then we can apply the procedure y to all the 
0=*, where a* E A=. Having obtained all of the elements of some set Q,, where 

r > n - s + 1, we use all of the axes occurring in Qr to construct all of the possible 
sums of r + 1 terms and then apply the procedure v to the corresponding O=, We 

apply the procedure Y to each problem 8” not more than once. It is clear that the pro- 
cess just described is finite. 

Let us determine p= = (r=, sign ya) where y’ is a unique element from r”) for all 

a E A . Let A,, = {a : p, = min ~~0, u”EA} 

The set of all optimal vectors cp coincides with the set of all convex linear combina- 
tions of any cp (one from each Q=), where a E Ao. 

The final result- takes the form 

PO = mm pa, ‘PO = 2 h=cp” (cp=E@=, h=>O, 2 h== 1) 
GEA CGA, GEAO 

The above algorithm is generally a rapid means of arriving at our goal. In fact, if all 
of the minors of order s - 1 of the matrix c and of order S of the matrix 11 c’ H 11 are 
not equal to zero, then the sets Q and Q,. turn out to be empty, so that we need consider 

only those problems El= where dim R a = n - s + 1, and Case (2) applies for all these 
ea. This requires the solution of C,“;l systems of S linear algebraic equations with s 
unknowns. 

It would be interesting to compare the results of applying the vector cp optimal for the 

stochastic and minimax (ellipsoid) variants of the problem to the minimax (parallele- 
piped) variant. and vice versa. It is, of course, necessary to compare cases where the 
matrices D, K-‘, c differ by a scalar factor only. We can show that the result 
(max, ldvl or fm) obtained in these cases exceeds the optimal result by a 
factor not larger than dn. 



764 A. P. Cherenkov 

‘7. Examples. let 

Then 

Let us consider two cases. 
1) Let E = Ee be a sphere of unit radius with its cenrer at the origin. Then ^ 

Equations (5.2) are as follows : 

14~1 -t- 69, = po2, 6q3, -I- 3Y, = 2P02, Yr + 2Y2 = I 

Their solution is 
‘pee = {- 91%. ‘2/3a~,* pcle = V/6/3> 

2) Let E = En be a cube all of whose vertices are equal to unity in absolute value. 

Here 1 0' 
T= 

I/ // 0 1 ’ 
c=s, rank 11 C’ H [\ =: s = :! 

We apply the procedure Y to all of the @, where dim Kg = n - s + 1 = 2. For all 
three such a we have 

rank (C”C) = 1, rank(/G;lj: /I=rank)/~,1)===.~-- 

System (5.2) is consistent by virtue of Theorems 6- 8. The corresponding vectors Y and 
y are unique, i.e. Case (2) applies. Let us construct system (6.2) for each of these a . 
The resulting equations enable us to determine cp and then y = CY and p = (V, Stan ‘I’). 

For a = {l,l,O} we have cp = { - ‘15, 3/j), y = {2/~,1i:,,0), p = “15. For a = (.I, 6, 1) we 

have q = (--‘/a, 2/3), y = {1:3, 0, - 1/3}, p --_ 2/3. For a = {O, 1, 1)we obtain Y = 
= (- i,l}, y= {0,-i, -2), 1~ = 3. Comparison of the quantities n shows that 

‘PO” == (--‘Ii, a/.i,, POP = 31s 

Applying to the sphere the vector Y optimal for the cube and making use of (5. l), we 
find that niax le’SY,Pj =I 1 / 7’5 (a E Ee) 

Applying to the cube the vector ‘p optimal for the sphere and making use of (6. l), we 
find that nlax !“‘SY”ej == =/z (E= E Ep) 

We also note that in the absence of the control under consideration 

max [ tll’ 1 = 617 (e E I?), maz 1 c/l. j = 6 (e E_EP) 

The author is grateful to Iu. B. Germeier for reading the manuscript of the present 
paper and for his valuable comments. 
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In recent years a large number of papers have been devoted to the development of vari- 
ous models of elastic media with microstructure. An analysis shows that in all these 
models there is some scale parameter 1, which can characterize the discreteness, the 
long-range effectiveness, the scale of correlation, and so forth. The appropriate theories 
can be regarded as weakly or strongly nonlocal. The former are represented by the con- 

tinuum theory of Cosserat, the couple-stress theory, the multipolar theory of elasticity, 

and so forth (e.g. see [l-4]). All these can be interpreted as the next approximation 
with respect to the usual (local) theory of elasticity. The parameter I in these cases 

must be considered as small. 
Strongly nonlocal theories which do not assume the smallness of I, were examined in 

[S-7] (see also review [8]) for unbounded media. 
In this paper boundary value problems of nonlocal theory are examined ; the transition 

from exact to approximate models is investigated ; a connection is established with 
boundary value problems of weakly nonlocal theories [Y, lo] in the formulation of which 

the physical significance of boundary conditions was previously unclear. 

The malor portion of this work is devoted to one-dimensional problems. In Sect. 1, 
coupling conditions of two media with microstructure are examined, the analog to 
Green’s formula is constructed, the fundamental boundary value problems and their equi- 
valent integral equations are written down. In Sect. 2. the structure of the general solu- 
tion of equations of motion for a homogeneous medium is examined. It is shown that 
the problem is reduced to the determination of roots of the energy operator in the com- 

plex plane of wave numbers. Green’s function is constructed. Characteristic differences 
between the nonlocal and the classical theory are examined. 

Section 3 is devoted to various approximate models and their regions of applicability. 
The long-wave approximation is compared to the approximation developed in this paper 
using first roots of the energy operator. The advantages of the latter approximation will 
be. the correct description of phenomena for which waves with the length of the order 1 
are essential, the preservation of the principal terms of the asymptotics, and the possibi- 

lity of correct approximate formulation of the boundary value problems. In Sect.4, as 
an illustration the exact and approximate solutions of the fundamental problems are 
examined for the semi-bounded region. 

In Sect. 5 some generalizations are presented for the case of a three-dimensional 
medium with central interaction. 


